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SUMMARY ,5204 
Heat-transfer coef f ic ien ts  on two axisymmetric models having down- 

stream facing s teps  were determined i n  t he  Langley Unitary Plan wind 
tunnel. One model, denoted as the stepped-cylinder model, cons is t s  of 
a t runcated conical  nose with a base radius l a r g e r  than the  cy l ind r i ca l  
afterbody. The second model duplicates the  downstream facing s t e p  a t  
the juncture of the  four th  and f i f t h  stages of an NASA f ive-s tage 
research vehicle.  

The stepped-cylinder model with a r t i f i c i a l  t r a n s i t i o n  w a s  t e s t e d  
a t  Mach numbers of 2.65 and 3.51, Reynolds numbers per  foot  from 
0.8 x 106 t o  3.1 x 106, and angles of a t t ack  from Oo t o  20°. 
angles of a t t ack  the  heating r a t e s  on the nose i n  and downstream of 
the region of reattachment were predicted by turbulent  cone theory 
based on the l o c a l  Mach number and the l o c a l  Reynolds number using a 
d is tance  measured from the stagnation point  on the f r o n t  face.  A t  an 
angle of  a t t ack  of Oo the  measured heat-transfer r a t e s  downstream of 
the region of separat ion a t  the  rearward facing s t e p  w e r e  i n  good agree- 
ment with turbulent  f l a t - p l a t e  theory based on l o c a l  conditions and a 
boundary layer  or ig ina t ing  a t  the  region of reattachment. The maximum 

meridian of the  cyl inder  a t  an angle of a t t ack  of 20' w a s  115 percent 
of the  measured stagnation-point value a t  an angle of a t t ack  of Oo. 

w a s  i n  p a r t  presented as a t h e s i s  e n t i t l e d  "An Invest igat ion of the Aero- 
dynamic Heating Rates i n  Regions of Flow Reattachment on Two Axisymmetric 
Configurations, which w a s  offered i n  p a r t i a l  fu l f i l lment  of t he  require- 
ments f o r  the  degree of Master of Science i n  Aeronautical Engineering, 
Virginia  Polytechnic I n s t i t u t e ,  Blacksburg, Virginia, May 1961. 

A t  a l l  

/&de I.,- Lrcab- + +n,, bl a l , ~ f e r  zce f f i c i en t  ir, t he  reattachment region along the windward 
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The contr ibut ion of Robert L. Stal l ings,  Jr., t o  the  subject  paper 

** Ti t le ,  Unclassified. 
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The measured heating r a t e s  along the windward meridian downstream of w 

the region of r e a t t a c h e a t  a t  m g l e s  of a t tack  grea te r  t h m  @ were i n  
good agreement with turbulent  infinite-swept-cylinder theory. 

The five-stage research vehicle model w a s  t e s t e d  a t  Mach numbers 
of 3.51 and 4.50, Reynolds numbers per foot  from 2.8 x 106 t o  4.5 X lo6, 
and an angle of a t tack  of 0'. 
rearward facing s tep  were i n  good agreement with turbulent  f l a t - p l a t e  
theory evaluated a t  l o c a l  conditions and a l o c a l  Reynolds number based 
on the a x i a l  length from the forward stagnation point. 

The measured values downstream of the 

INTRODUCTION 

Wind-tunnel t e s t s  of the Project Mercury reent ry  configuration have 
indicated heat- t ransfer  r a t e s  i n  the flow reattachment regions on the 
rearward p a r t  of the spacecraft  t o  be of the same order of magnitude as 
those on the stagnation point of the ablat ion shield.  
A survey of the l i t e r a t u r e  indicated t h a t  the l i x i t e d  amount of e x i s t i n g  
information per ta ining t o  the boundary-layer propert ies  associated with 
the flow reattachment region downstream of a rearward facing s t e p  i s  
primarily concerned with a two-dimensional-flow f i e l d ,  f o r  example, re f -  
erences 2, 3, and 4. Therefore, an experimental program a t  the Langley 
Unitary Plan wind tunnel i s  now i n  progress t o  evaluate the e f f e c t s  of 
nose shape, model a t t i t u d e ,  and free-stream variables  on the aerodynamic 
heating associated with the reattachment region on axisymmetric bodies. 
I n  order t o  expedite publication of the phase of the program f o r  which 
experimental t e s t s  a re  completed, only two models w i l l  be discussed i n  
t h i s  paper. One model, denoted as the stepped-cylinder model, cons is t s  
of a truncated-cone nose sect ion and a c y l i n d r i c a l  afterbody, the radius 
of the base of the nose being l a r g e r  than the radius of the cyl inder  and 
thus forming a downstream facing s t e p  a t  the nose-afterbody juncture. 
The second model dupl icates  the f a i r i n g  of the four th  and f i f t h  s tages  
of a n  NASA five-stage research vehicle.  This model has a downstream 
facing s t e p  a t  the juncture of the four th  and f i f t h  stages, and it w a s  
speculated that ,  i f  reattachment occurred as i n  reference 1, the resu l t -  
a n t  high heating r a t e s  on a magnesium stage f a i r i n g  could be the reason 
f o r  previous unexplained vehicle f a i l u r e s .  

(See r e f .  1.) 

. 

The stepped-cylinder model was t e s t e d  a t  angles of a t tack  from 0' 
t o  20° at Mach numbers of 2.65 and 3.51; the f ive-s tage research vehicle 
model was tes ted  a t  an angle of a t tack  of 00 at  Mach numbers Of 3.51 
and 4.50. 

. 
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SYMBOLS 

pressure coeff ic ient ,  P l  - p, 
s, 

C 

h heat- transfer coeff ic ient ,  Btu/sec-ft2-OR 

M Mach number 

spec i f ic  heat  of model skin, Btu/lb-OR 

NSt Stanton number 

P pressure, lb / sq  f t  

stagnation pressure behind normal shock, lb/sq f t  Pt ,  2 

9 dynamic pressure, lb/sq f t  

3 

r flat-face-nose radius of stepped-cylinder model, 0.073 f t  

R free-stream Reynolds number per foot 

t time, sec 

stagnation temperature, 0 R 
T t  

0 Tw w a l l  temperature, R 

%, e 
0 measured w a l l  equilibrium temperature, R 

W weight of model skin per u n i t  area, lb/sq f t  

x1,x2,x3 surface coordinates of stepped-cylinder model along f l a t - f a c e  
nose, conical frustum, and cy l indr ica l  afterbody (defined 
i n  f i g .  1), in .  

Y s t e p  height of stepped-cylinder model (defined i n  f i g .  l), 
0.05 f t  

U angle of attack, deg 

7 r a t i o  of spec i f ic  heats, 1 .4  f o r  a i r  

E emissivi ty  
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Stefan-Boltzmann constant., 0.484 x 10-12, 3tu/sec-ft2-OE 

meridian angle, measured i n  plane normal t o  a x i s  of symmetry, 
deg 

Subscripts : 

i indices of summation 

2 l o c a l  conditions a t  ou ter  edge of boundary layer  

S conditions along stagnation l i n e  of i n f i n i t e  swept cyl inder  

t stagnation 

0 ,1 ,2 ,3 , - . . ,n  time sequence 

m f ree-s tream conditions 

DESCRIPTION OF MODELS 

The construction of the stepped-cylinder model, as i l l u s t r a t e d  i n  
f igure  1, consisted of a truncated conical  nose having a 20' half-angle 
and a base radius 0.6 inch l a rge r  than the  radius  of a cy l ind r i ca l  a f t e r -  
body. The model w a s  constructed with interchangeable cyl inders  t o  
f a c i l i t a t e  de ta i led  measurements of both pressure and hea t - t ransfer  coef- 
f i c i en t s .  Evaluation of the hea t - t ransfer  coef f ic ien ts  from t rans ien t -  
wall-temperature measurements necess i ta tes  thin-walled construction; 
therefore,  the nose sect ion and the cyl inder  instrumented with thermo- 
couples were constructed by spinning and r o l l i n g  a 0.030-inch Inconel 
sheet on form mandrels. Heat losses  due t o  i n t e r n a l  conduction, i n t e r n a l  
convection, and ex terna l  rad ia t ion  were minimized by using bulkheads 
constructed of Transite insu la t ing  mater ia l  re l ieved i n  the v i c i n i t y  of 
the thermocouples, by venting the  s h e l l  i n t e r i o r  t o  free-stream s t a t i c  
pressure, and by polishing the model t o  a 10-microinch f i n i s h .  
measurements were obtained on the thin-walled nose sect ion and the  thick- 
walled cylinder i l l u s t r a t e d  i n  f igure  l ( a )  . 
pressure and hea t - t ransfer  configurations a re  shown i n  f igure  2. The 
heat-transfer configuration w a s  sprayed with an a c r y l i c  p l a s t i c  t o  
decrease the surface l u s t e r  f o r  photographing. 

Pressure 

Photographs of both the  

A second model consisted of the a c t u a l  ou ter  s h e l l  of the f i f t h  
stage and a simulated port ion of the four th  s tage of an NASA f ive-s tage 
research vehicle.  A s  i l l u s t r a t e d  i n  f igu res  3 and 4, a downstream s t e p  
e x i s t s  between the four th .and  f i f t h  s tages  of t h i s  model. 

F 

The model w a s  
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constructed as i l l u s t r a t e d  i n  f igure 3 i n  the same manner as  the stepped- 
cyl inder  model t o  minimize heat  losses due t o  i n t e r n a l  conduction, i n t e r -  
n a l  convection, and ex te rna l  radiat ion.  I n  order  t o  minimize l a t e r a l  
def lec t ions  of the  model during the test, a thick-walled tube w a s  used 
f o r  i n t e r n a l  support with the  thin-walled model components attached t o  
it by severa l  f lange 

The stepped-cy1 

come c t  ions. 

INSTRUMENTATION 

nder model w a s  instrumented w t h  s i x t y  No. 30 gage 
iron-constantan thermocouples and twenty-one s ta t ic -pressure  o r i f i c e s  
having 0.035-inch inside diameters. Two stagnation-temperature probes 
were mounted on the  s t i n g  behind the model a t  def lec t ion  angles of Oo 
and 10' t o  the model center  l i ne .  
and pressure o r i f i c e s  as shown i n  f igure 1 i s  defined by an angle 
and surface coordinates x1,x2,x3 with or ig ins  a t  the  s tagnat ion point 

The loca t ion  of the  thermocouples 
# 

on the  f la t  f ron t  face, a t  t he  juncture of t he  f l a t  f r o n t  face and t h e  
conica l  nose, and a t  the juncture of t he  conical nose and t h e  cylinder,  
respec'cively. The angle # i s  oriented so t h a t  when 00 # 5 90° the 
instrumentation i s  on the  windward h a l f  of the model, and when 
900 5 # 5 1800 t he  instrumentation i s  on the leeward ha l f  of t he  model. 
The l o c a l  w a l l  thickness i s  a l so  presented i n  f igu re  1 f o r  each thermo- 
couple locat ion.  Each thermocouple output w a s  recorded on a multichannel 
sequent ia l  analog t o  d i g i t a l  conversion system discussed i n  reference 5 .  

The l o c a l  t o t a l  pressure outside the  boundary l aye r  w a s  determined 
from measurements taken with a two-tube rake located near the base of 
the  nose sec t ion  and a six-tube rake located a t  two a x i a l  s t a t i o n s  on 
the cyl inder .  These rakes are shown i n  f igure  1. The l o c a l  pressures 
were measured by e l e c t r i c a l  transducers and each e l e c t r i c a l  output W B S  

recorded on d i g i t a l  self-balancing potentiometers. 

The f ive-s tage research vehicle model w a s  instrumented with 57 iron- 
constantan thermocouples. The location of the thermocouples and the 
l o c a l  w a l l  thicknesses a re  shown i n  f i gu re  3. 'TWO s t a g n a t i o n - t e i ~ ~ i - a t u r ~  
probes were mounted a t  the  base of the  model i n  l i n e  with the two rows 
of thermocouples. The l o c a l  free-stream Mach number a t  the  base of the 
simulated four th  s tage w a s  determined by s t a t i c -  and total-pressure 
measurements. 

The tunnel  free-stream s t a t i c  and s tagnat ion pressures were measured 
on precis ion mercury manometers. 
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Mode Is T e s t  

- __ - - .- .- - - 

Stepped cyl inder  S t a t i c  0, 5, io,  15, 20 

Stepped cyl inder  Total  0, 5, io, 15, 20 

Stepped cylinder Heat 0, 3, io, 15, 20 

Stepped cylinder Heat 0, 5, 10, 15, 20 

SteFped cylinder Heat 0, 10 

I 

pres sure 

pre s sure  

t r a n s f e r  

t r a n s f e r  

t r ans fe r  

0 ' research vehicle  t r a n s f e r  
I Five - s tage 

I 

Five-stage I Heat 0 

I Heat 
I I 

I 
research vehicle 1 t r a n s f e r  

L - 1  

APPARATUS AND TEST CONDITIONS 

Stagnation 
Mach pressure 

number (nominal), 
lb / sq  in .  abs 

- 

2.65 20 

2.65 20 

2.65 20 

3-51 35 

3.51 10 

3.51 56, 35 

4.50 85, 60 

This invest igat ion w a s  conducted i n  the high Mach number tes t  sec- 
t i o n  of the  Langley Unitary Plan wind tunnel  described i n  reference 6. 
This variable-pressure, continuous-flow tunnel  has an asymmetrical 
sliding-block nozzle t h a t  permits a continuous va r i a t ion  i n  the  test- 
sect ion Mach number from 2.3 t o  4.65. 
the en t i r e  4- by 4-foot t e s t  sect ion f o r  Mach numbers of 2.65, 3.51, 
and 4.30 i s  kO.03, kO.05, and kO.06, respect ively.  

The deviat ion i n  Mach number over 

Both stepped-cylinder configurations had a r t i f i c i a l  t r a n s i t i o n  i n  
the  form of No .  60 carborundum grains  located on the  conical  nose as 
i l l u s t r a t e d  i n  f igure  1. 

Heat-transfer coef f ic ien ts  f o r  both models and pressure coeff i -  
c i e n t s  fo r  the stepped-cylinder model were determined for the  following 
t e s t  conditions : 



a 

m e  moo mo 
o o o  m o o  m a .  
o m m a  o o  
* o m  o m .  
om m m m  me 0 0 .  mo --- ma earn e m o m  a m  

o m  m a  m a  
o m .  m o o  o m  

m o o  m o  o m  
ma moo ma 

The s t a t i c -  and total-pressure t e s t s  were conducted separa te ly  t o  avoid 
interference e f f e c t s  and, due t o  l imited tunnel  time, pressure measure- 
ments were not obtained at M = 3.51. 

METROD OF HEAT-TRIWSF'EX-DATA REDUCTION 

The hea t - t ransfer  coef f ic ien ts  were obtained from transient-skin-  
temperature measurements r e su l t i ng  from a stepwise increase i n  stagna- 
t i o n  temperature as discussed i n  reference 5 .  The following re la t ion ,  
which assumes constant temperature through the skin, negl igible  l a t e r a l  
hea t  flow, negl igible  heat flow t o  the model i n t e r io r ,  and no heat  losses  
due t o  rad ia t ion ,  w a s  used: 

This equation as shown i n  reference 5 can be wr i t t en  i n  the  following 
form f o r  complete machine calculat ion:  

The summations are  evaluated over increments of time according t o  the 
t rapezoida l  rule 

1 Tn t T1 + T2 + . . . + Tn-l) 

0 

and the  r a t i o  i s  experimentally determined. 

The magnitude of the l a t e r a l  heat flow f o r  a thin-skin model as 
discussed i n  reference 1 i s  negligible.  

t i o n  i s  dependent upon the  term cr~(T': - T:), where Ta i s  the  tunnel 
w a l l  temperature, and t h i s  term is  negligible.  

The heat flow caused by radia- 
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The accuracy of the  temperature measurements including recorder 
resolution, thermocouple-wire cal ibrat ion,  and cold junctions i s  ?2O F; 
however, t h i s  e r r o r  w i l l  occur i n  temperature l e v e l  r a the r  than i n  ran- 
dom temperature f luc tua t ions .  
i n  r a t io s  of equilibrium temperature t o  stagnation temperature ~ w ,  e/Tt 
greater  than 1 i n  stagnation regions of t he  model. Also, as discussed 
i n  reference 5 ,  ' i n  regions of low heat t r a n s f e r  ( h  l e s s  than O.OOl), 
the  r a t i o  Tw,,/Tt may be questionable, because the w a l l  temperature 
may not have reached equilibrium from the  preceding t e s t  point.  

A temperature e r r o r  of -12O F could r e s u l t  

An estimation of the accuracy of hea t - t ransfer  measurements i n  the 
Langley Unitary Plan wind tunnel has been determined by the r epea tab i l i t y  
of data i n  the t e s t s  discussed i n  reference 1. The accuracy i s  dependent 
upon the magnitude of the heat- t ransfer  coef f ic ien t .  
the  accuracy i s  within 10 percent; f o r  0.0010 < h < 0.0130, within 
15 percent; and f o r  h < 0.0010, within 20 percent. Although h < 0.0010 
i s  w i t h i n  the accuracy of da t a  reduction, no s ignif icance i s  attached A 

t o  the magnitude of h o ther  than t o  indicate  the low-heat-transfer 
regions. 

For h > 0.0150, 

The accuracy of the precis ion manometers i s  within 0.5 lb / sq  f t .  
Therefore, the accuracy of t he  system i s  l imi ted  t o  t h a t  of t he  e l e c t r i -  
c a l  transducer which i s  0.5 percent of fu l l - s ca l e  def lect ion.  The maxi- 
mum possible e r r o r  i n  the pressure coe f f i c i en t  r e su l t i ng  from the  inaccu- 
racy of the  e l e c t r i c a l  transducer i s  0.0165. 

RESULTS AND DISCUSSION 

Schlieren p ic tures  taken of both the  stepped-cylinder model and 
the  five-stage research vehicle model and shadowgraph photographs of 
the  stepped-cylinder model are  presented i n  f igures  5 ,  6, and 7. Complete 
l i s t s  of the pressure da ta  obtained on the  stepped-cylinder model and the 
heat- t ransfer  da t a  obtained on both models throughout the range of t es t  
variables are  presented i n  t ab le s  I t o  I V .  

Pressure Distr ibut ion for Stepped-Cylinder Model 

Conical nose.- The local-pressure-coefficient d i s t r i b u t i o n  over the L 

conical segment of t he  nose i s  presented i n  f igure  8(a) f o r  
R = 5.1 X 10 6 , and angles of a t t ack  of Oo, loo, and 20'. 
location of the flow reattachment poin ts  as determined from shadowgraphs 

M = 2.65, 
The approximate 
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i s  indicated by the  so l id  symbols on the abscissa  sca le .  Due t o  the 
lack of instrumentation i n  the  separated region, the  ex ten t  of the 
e f f e c t s  of separat ion on the pressure d i s t r ibu t ion  cannot be specified; 
however, at a = 0' these e f f e c t s  occur over a surface length approxi- 
mately twice t h a t  of t he  v i s i b l e  separation on t h e  shadowgraphs. This 
same t rend  w i l l  be shown subsequently i n  the hea t - t ransfer -coef f ic ien t  
d i s t r ibu t ion .  In the region of uniform pressure downstream of the  
e f f e c t  of reattachment, the pressure coe f f i c i en t s  a r e  approximately 
15 percent l e s s  than the  theo re t i ca l  cone values determined from ref -  
erence 7. A similar disagreement between experimental and theo re t i ca l  
values w a s  obtained on a blunted conical nose a t  M = 3.55 i n  re fer -  
ence 8. Increasing the angle of a t tack t o  loo r e su l t ed  i n  an increase 
i n  the pressure coe f f i c i en t s  and a decrease i n  the  ex ten t  of separat ion 
e f f e c t s .  A s  a crude approximation, the  elevated pressure coe f f i c i en t s  
a t  t h i s  angle of a t t ack  were approximated by a 30° cone a t  an angle of 
a t t a c k  of Oo. 
by approximately 10 percent. A t  an angle of a t t a c k  of 20°, t h i s  pre- 
d i c t i o n  f o r  a 40° cone a t  
than the experimental values. Since l o c a l  pressures  a r e  necessary i n  
the  ana lys i s  of heat- t ransfer  invest igat ions and experimental pressures 
were not  obtained a t  M = 3.51 f o r  t h i s  invest igat ion,  they were 
approximated by an equivalent cone a t  an angle of a t t ack  of Oo as a 
r e s u l t  of the agreement obtained with experimental and t h e o r e t i c a l  
values a t  M = 2.65. 

This approximation overpredicted the  experimental values 

a = Oo was approximately 3 percent grea te r  

Cyl indrical  afterbody.- The local-pressure-coeff ic ient  d i s t r ibu -  
t i o n  over the cy l ind r i ca l  afterbody i s  shown i n  f igu re  8(b) for  
R = 3.1 x 106, and angles of a t tack  of Oo, loo, and 20'. 
l oca t ion  of the flow reattachment points on the cyl inder  as determined 
from shadowgraphs i s  represented by the  solid 'symbols on the  abscissa  
sca le .  A t  an angle of a t tack  of  Oo, the  e f f e c t  of t he  separated region 
on the pressure coe f f i c i en t s  i s  similar t o  the  r e s u l t s  obtained on the 
conica l  nose and extends t o  approximately 1.3 times the  measured length 
of separat ion.  Downstream of the  region af fec ted  by separation, the 
l o c a l  pressure re turns  t o  approximately the  free-stream value, r e su l t i ng  
i n  pressure coe f f i c i en t s  of zero magnitude. The l o c a l  Mach numbers on 
the cyl inder  as determined from measured l o c a l  s t a t i c  and t o t a l  pres- 
sures  are approximately constant at a value of 2.1. 

M = 2.65, 
The approximate 

A t  angles of a t t ack  of both loo and 20°, the experiment.al pressure 
coe f f i c i en t s  downstream of the  e f fec ts  of separat ion a r e  i n  good agree- 
ment with predicted values from the following equation (ref.  9): 

- 

2 s i n  a + PS 
Pt,  2 
- =  cos2a 
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This eqdation defines the stagnation-pressure r a t i o  along the stagnation 
l i ne  of an i n f i n i t e  swept cylinder evaluated a t  the  free-stream condi- 
t i ons .  This agreement w a s  r a the r  surpr i s ing  as it indica tes  t h a t  t he  
end e f f ec t s  of t h i s  configuration on the  inv isc id  flow f i e l d  outside' the  
boundary layer  on the windward side of the  cyl inder  downstream of reat tach-  
ment a re  small. 

Heat -Transfer Distr ibut ion f o r  Stepped- Cylinder Model 

Nose section.-  The experimental d i s t r ibu t ion  of h on the f l a t  
f ron t  face portion of the  nose i s  i n  good agreement with the experimental 
d i s t r ibu t ions  presented i n  reference 10 and hence w i l l  not  be discussed 
herein.  The measured d i s t r ibu t ion  of h on the  conical  port ion of the  
nose i s  presented i n  f igure  9 f o r  Mach numbers of 2.65 and 3.51, Reynolds 
numbers of 0.8 X 106, 2.5 x 106, and 2.8 X lo6, and angles of a t t ack  of Oo, 
loo, and 20'. A t  M = 2.65 and an angle of a t t ack  of 0' ( f i g .  9(a)) ,  
the measured heat- t ransfer  coef f ic ien ts  associated with the separated 
region a t  the corner (formed a t  the  in t e r sec t ion  of t he  f ron t  face with 
the conical s ide )  extend t o  approximately twice the measured dis tance of 
separation. The m a x i m u m  measured h i n  the  region of reattachment i s  
approximately the  same magnitude as  the measured h a t  the s tagnat ion 
point on the f ront  face. However, the  experimental values i n  and down- 
stream of the  region of reattachment are i n  f a i r  agreement with turbulent  
conical  theory ( r e f .  11) using measured s t a t i c  pressures and w a l l  t e m -  
peratures,  the t o t a l  pressure behind a normal shock a t  free-stream Mach 
number, and a surface length measured from the  s tagnat ion point on the  
f l a t  f ront  face.  The movement of the  s tagnat ion point  with a w a s  
determined from reference 10. Although the m a x i m u m  hea t - t ransfer  coef- 
f i c i e n t s  i n  the reattachment regions a t  angles of a t t ack  of loo and 20' 
are  approximately 170 percent and 200 percent,  respectively,  of the  meas- 
ured stagnation-point value a t  an angle of a t t ack  of Oo, the  evaluated 
d is t r ibu t ion  of  h i s  predicted by the  turbulen t  cone theory. A t  an 
angle of a t tack of 20°, the  predicted h i s  low; c lose r  agreement of 
theory with experiment has been obtained (although not shown i n  f i g .  9(a))  
with a Reynolds number based on the  surface dis tance from the  juncture 
of the f l a t  face and the  conical  surface.  

The heat-transfer-coefficient d i s t r i b u t i o n  f o r  M = 3.51 and a 
Reynolds number of 2 .8  x 10 6 are shown i n  f igu re  9 (b ) .  The t h e o r e t i c a l  
values of h were computed by the  method out l ined  f o r  M = 2.65, except 
t ha t  the loca l  s t a t i c  pressures w e r e  determined from the  pressure coef- 
f i c i e n t s  of the equivalent conical  flow, as mentioned i n  the  pressure 
analysis,  and the  t o t a l  pressure w a s  assumed t o  correspond t o  t h a t  behind 
a normal shock a t  the free-stream Mach number. A t  an angle of a t t ack  
of Oo, the experimental values of h a t  the forward thermocouples a re  
of the same magnitude as predicted by laminar theory; however, a t  the  



. 

0.. 0 0 0 0 .  
0 0 . 0  0 . 0  
0 .  0 .  * . * 0.. 0 
0 0 .  0 .  0 0 .  rn . L. 

11 

rearward thermocouples the  experimental values approach the  turbulent  
t h e o r e t i c a l  values, thus ind ica t ing  a gradual t r a n s i t i o n  from laminar t o  
turbulen t  flow. The d i s t r ibu t ion  of h for a Mach number of 3.51 a t  the 
angles of a t tack  o ther  than Oo i s  very s imi la r  t o  t h a t  measured a t  a 
Mach number of 2.65; t h a t  is, t he  highest heating occurs i n  the  reat tach-  
ment region and these m a x i m u m  values increase with increasing angle of 
a t tack .  A t  angles of a t t ack  of loo and 20°, the  m a x i m u m  hea t - t ransfer  
coe f f i c i en t s  were approximately 120 percent and 175 percent of t he  
stagnation-point value a t  an angle of a t t ack  of Oo; however, these maximum 
values are approximated by the  turbulent cone theory. 

The e f f e c t  of decreasing t h e  Reynolds number from 2 .8  X lo6 t o  
0.8 x lo6 a t  
shown i n  f igure 9(b) .  
previously noted does not occur a t  the low Reynolds number at  e i t h e r  
angle of a t tack.  The magnitude of the heating r a t e s  a t  the  low Reynolds 
number i s  approximately 60 percent of the turbulent  theory a t  both values 
of a; however, the laminar conical  theory ( r e f .  ll), based on the  same 
conditions as the  turbulent  theory, i s  i n  very good agreement with the  
experiment a1 data.  

M = 3.51 and a t  angles of a t tack  of Oo and 10' i s  a l so  
The high heating associated with reattachment as 

A comparison of the  heating ra tes  i n  the reattachment region on the  
conical  nose sect ion associated with a turbulent  boundary l aye r  with those 
associated with a laminar  boundary layer  ind ica tes  t h a t  the comparatively 
high heat  r a t e s  i n  t h i s  reattachment region are  pr imari ly  a function of 
the  nature of t he  boundary l aye r  ra ther  than the  reattachment mechanism 
i n  i t s e l f  and tha t ,  furth.ermore, these heating r a t e s  can be estimated by 
e x i s t i n g  theor ies  provided the l o c a l  conditions and the nature of the 
boundary layer  are  known. 

Cyl indr ica l  afterbody.- The e f f e c t  of angle of a t tack,  Mach number, 
and Reynolds number on the  heat- t ransfer-coeff ic ient  d i s t r i b u t i o n  along 
the  windward meridian of the  cy l indr ica l  afterbody i s  presented i n  f i g -  
ure  10. For purposes of comparison, the measured hea t - t ransfer  coef- 
f i c i e n t  a t  the s tagnat ion point  of the nose a t  an angle of a t t ack  of Oo 
i s  i n d i c a t e d  for each Mach number and Reynolds number. 

The e f f e c t  of angle of a t tack  on the  d i s t r i b u t i o n  of h a t  a Mach 

A t  an angle of a t t ack  of Oo, 
number of 2.65 and a Reynolds number of 2.5 x lo6 i s  shown i n  f igure  l O ( a )  
f o r  angles of a t t ack  of Oo, loo, and 20°. 
the  d i s t r i b u t i o n  of h downstream of the  e f f e c t s  of separation i s  i n  
very good agreement with the turbulent f l a t - p l a t e  theory of reference 11. 
This theory was based on the  l o c a l  Mach number determined from the meas- 
ured s t a t i c  and t o t a l  pressure and a boundary layer  or ig ina t ing  a t  the  
measured reattachment point on the  cylinder. A t  an angle of a t t ack  
of loo, the  turbulent  f l a t - p l a t e  theory gives fa i r  agreement with the 
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experiaent.al da ta  d o m s t r e m  cf t he  e f f e c t s  
x3/y 2 9, the  experimental values were bes t  
inf  inite-swept-cylinder theory presented i n  

of s,eparation. iiowever, f o r  
predicted by the turbulent ,  
reference 12. The cyl inder  

stagnation-line pressure was determined from equation (2 ) .  
heating i n  the reattachment region f o r  an angle of a t t ack  of loo w a s  
approximately 85 percent of the  s tagnat ion value. 
of 20°, the m a x i m u m  h i n  the  reattachment region w a s  approximately 
115 percent of the  s tagnat ion value. 
flow dominates the stagnation l i n e  i n  the region downstream of the  e f f ec t s  
of separation, and the r e su l t an t  hea t - t ransfer  coe f f i c i en t s  a re  r ead i ly  
predicted by turbulent  swept- cylinde r theory. 

The m a x i m u m  

A t  an angle of a t tack  

A t  an angle of a t t ack  of 20°, cross  

The e f f e c t  of increasing the Mach number from 2.65 t o  3.51 
( f i g .  10(b))  a t  approximately the same Reynolds number resu l ted  i n  a 
general decrease i n  the  hea t - t ransfer -coef f ic ien t  d i s t r i b u t i o n  f o r  each 
angle of a t tack .  The same good agreement between experiment and turbu- 
l e n t  swept-cylinder theory w a s  obtained f o r  the  port ion of t he  cyl inder  
downstream of  the  region of reattachment. The turbulent  f l a t - p l a t e  
theory of reference 11 could not be calculated f o r  t h i s  Mach number 
since no pressure measurements were obtained. The magnitudes of t he  
maximum hea t - t ransfer  coef f ic ien ts  i n  the region of reattachment expressed 
i n  terms of percent of the  s tagnat ion value on the  f l a t  f r o n t  face f o r  
angles of a t t ack  of 10' and 20' are  approximately 70 and 80 percent,  
re spec t ive l y  . 

The d i s t r i b u t i o n  of h i s  a l so  presented i n  f igu re  10(b)  f o r  a 
Mach number of 3.51, a Reynolds number of 0.8 X 106, and angles of 
a t tack  of 0' and loo. The magnitude of t he  d i s t r i b u t i o n  of h a t  t h i s  
Reynolds number i s  approximately one-third of t he  values a t  the  higher 
Reynolds number f o r  each angle of a t tack.  This reduced heating, similar 
t o  t h a t  measured on the conical  nose a t  t h i s  Reynolds number, i s  repre- 
sentat ive of a laminar boundary layer .  
the experimental da ta  are i n  good agreement with infinite-swept-cylinder 
laminar theory ( r e f .  9 )  and i s  approximately one-half of the  turbulen t  
swept-cylinder theory of reference 12. 

A t  an angle of a t t ack  of loo, 

A plausible explanation of the  loca l ized  high heat ing r a t e s  occurring 
a t  an angle of a t tack  of 20° i n  the  reattachment region downstream of 
the s tep  is  t h a t  the cyl inder  i s  at  a higher angle of a t t ack  r e l a t i v e  
t o  t,he veloci ty  vector  adjacent t o  the  separat ion region as compared t o  
the angle of a t tack  r e l a t i v e  t o  the  free-stream ve loc i ty  vector.  The 
i n s t a b i l i t y  of the flow pa t te rn  i n  the v i c i n i t y  of reattachment prevents 
an accurate measurement of t h i s  psuedo angle of a t tack .  



C .  ..e _. . 0.. .. 
He a t  - Tran s f e r Distr ibut ion f o r  Five - Stage Re search Vehicle Mode 1 

The hea t - t ransfer  d i s t r i b u t i o n  measured on the  five-stage research 
vehicle  node1 i s  presented i n  f igu re  11 f o r  Mach numbers of 3.51 and 4.50 
at nominal Reynolds numbers of 3.0 X 106 and 4.5 X 106. A t  s t a t i o n s  59 
t o  61 and 73 t o  86, heat- t ransfer  coeff ic ients  were measured along two 
d iamet r ica l ly  opposite a x i a l  rays at meridian angles of 0' and 1800 and 
a re  i d e n t i f i e d  by the  opened and flagged symbols, respect ively.  
difference i n  the l e v e l  of heat- t ransfer  coe f f i c i en t  occurs between 
thermocouples a t  
prevents experimental explanation of this phenomenon. For M = 3.51, 
the  hea t - t ransfer  d i s t r i b u t i o n  downstream of the  s t e p  is  of the  same 
order  of magnitude as that between s ta t ions  59 and 61  upstream of 
the  influence of the s tep.  Downstream of the step,  the  predicted 
values from the  turbulent  f l a t - p l a t e  theory of reference 11, based 
upon l o c a l  Mach number and a x i a l  distance from the nose, are  between 
the experimental da ta  f o r  the upper and lower meridian l i nes .  

A s l i g h t  

9 = Oo and 180~. The lack of pressure instrumentation 

Increasing the Mach number t o  4.50 resu l ted  i n  a general  decrease 

Fa i r  agreement w a s  obtained between the experimental 
i n  the  hea t - t ransfer  d i s t r ibu t ion  as shown i n  f igu re  l l ( b )  a t  each 
Reynolds number. 
values downstream of the s t e p  and turbulent f l a t - p l a t e  predict ions.  

CONCLUDING REMARKS 

Heat- t ransfer  coef f ic ien ts  on two axisymmetric models having down- 
stream facing s teps  were determined i n  t he  Langley Unitary Plan wind 
tunnel.  One model, denoted as the stepped-cylinder model, cons is t s  of 
a t runcated conical nose with a base radius  l a r g e r  than the cy l ind r i ca l  
afterbody. The second model duplicates the downstream facing s t e p  at 
the  juncture of the four th  and f i f t h  s tages  of an NASA five-stage 
research vehicle.  

The stepped-cylinder model w a s  t es ted  a t  Mach numbers of 2.65 
and 3.51, a t  Reynolds numbers from 0.8 X 106 t o  3.1 X 106, and a t  angles 
of a t t ack  from Oo t o  20'. 
the  conical  nose i n  and downstream of t h e  region of reattachment were 
predicted by turbulent  cone theory based on the l o c a l  Mach number and 
the local Reynolds number using a distance measured from the  stagnation 
point  on the f r o n t  face.  
hea t - t ransfer  r a t e s  downstream of the region of separat ion were i n  good 
agreement with turbulent  f l a t - p l a t e  theory based on l o c a l  conditions 
and a boundary l aye r  o r ig ina t ing  at the region of reattachment. The 
maximum hea t - t ransfer  coef f ic ien t  i n  the reattachment region along the  

A t  a l l  angles of a t tack  the  heat ing r a t e s  on 

A t  an angle of a t tack  of Oo the  measured 
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windward meridian of the  cylinder a t  an angle of a t tack  of 20° wzs 
113 percent of the measured stagnation-point value a t  an angle of a t tack  
of Oo. The measured heating r a t e s  downstream of the  region of reat tach-  
ment a t  angles of a t t ack  grea te r  than 0' were i n  good agreement with 
turbulent i n f i n i t e -  swept- cyl inder  theory. 

The research vehicle model w a s  t e s t e d  at  Mach numbers of 3 .51  
and 4.50, at Reynolds numbers from 2.8 X lo6 t o  4.5 X 106, and a t  an 
angle of a t t ack  of 0'. The measured values downstream of the  rearward 
facing s tep  were i n  good agreement with turbulent  f l a t - p l a t e  theory 
evaluated at l o c a l  conditions and a l o c a l  Reynolds number based on the  
a x i a l  length from the forward s tagnat ion point.  

The measured heating rates i n  the  reattachment regions on both 
models a t  an angle of a t tack  of Oo ind ica te  no excessive heat ing r a t e s  
above those predicted by f l a t - p l a t e  and conical  theories .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Air Force Base, Va. ,  Ju ly  6, 1961. 
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TABLE 111. - LOCAL HEAT-TRANSFER M?USWWSTS OBTA7NED 

ON THE STEPPED-CYLINDE3 MODEL - Continued 

(b) M = 3.51 

a = Oo; Tt = 715OR; 
= 1,445.1 lb/sq f t  pt,m 

1.00619 
.99887 
-98817 
* 97860 

.96339 

.95889 

.96564 

.96959 

.97353 

1.01464 
1.00225 

.96452 

- 95720 

_-_---- 
_-_---- 

.99780 

.99267 

.99662 
-99042 
.98986 - 99042 
.98873 
.98873 
.99098 
.98986 
.99098 
.98930 
.98930 - 98592 
.98817 
.98648 
.98479 
.98761 
.98986 
.98761 
* 99774 
* 99155 
.99098 
.98986 
.99042 
.99211 
* 99267 
.99042 
* 99155 
.989% 
-98817 
.99098 

642.5 
641.2 
635.9 
629.2 
606.5 
597.2 
590.5 
586.2 
588.2 
588.9 
589.9 

597.9 
591 - 9 
589.2 
590.2 
593.2 
590.2 
589.9 
590.5 
589 5 
589.9 
590.5 
590.2 
590.2 
589 2 
590 - 5 
587.2 
589.2 
588.5 
588.2 
590.2 
591 * 9 
590 * 9 
597.2 
592.2 
591.2 
589.9 
589 5 
591-2 
590.9 
590.9 
591 * 2 
588.9 
589.9 
588 - 5 

----- ----- 

0.00631 

.00582 

.00281 

.00248 

.00222 

.00182 

.00176 

.0016 3 

.00651 

.00644 

* 00359 

------- 
------- 
.00011 
.00021 
.a3045 
.00062 
.00068 
.00075 
.00070 
00079 

.00071 

.00081 

.00075 

.00079 

.00069 

.00075 . oooao 

.oo080 

.00073 

.00085 

.00094 

.ooog3 

.00096 

.00102 - 00099 . ocoao 

.00080 

.00081 

.0007 3 
00075 

.00065 - 00079 

.00078 

. o m 5  

.-3 
* 00062 

0.006149 
.00694 
.006276 
.ow672 
-003499 
.002738 
.002417 
.00216 3 
.001774 
.001715 
.001588 -------- 

- - - - - - - - 
.000107 
.000205 
.000439 
.000604 
.000663 

.000682 

.000692 

.000789 

.000731 

.000672 

. 00078~ 

.00078c 

.000711 

.om828 

.ooog& 

.000936 

.000965 

.00078c 

.00078c 

.000789 

.om633 

.000760 
,000828 
,000809 
.000604 

.0007 31 

.000770 

.00077C 

.000731 

.000916 

.OOOg94 

.000711 

.000731 

,000770 

0.99430 

-98519 
.97835 
.96753 
* 9 7 0 9  
.96696 

.97380 

.97493 

. 9 9 m  
97721 

.97038 

.96354 

.96240 

.96924 

.96013 

.95842 

.95899 

.95671 

.95614 

.95785 

.95614 

.95728 - 95500 - 95500 
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. 
(a) Heat-transfer configuration. L-60- 3705 

G60- 3702 
(b) Pressure configuration with rearward pressure rake installed. 

Figure 2. - Stepped-cylinder model. 
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(a) Complete model. L 60- 46 15 

~60-4617 (b) Enlargement of step.  

Figure 4.-  Five-stage research vehicle  model. 
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a = loo oi = 1 5 O  
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a = Z O O  

L-61-2193 6 (a) M = 2.65; R = 3.1 x 10 . 
Figure 5.- Typical schlieren photographs of stepped-cylinder model. 
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a = O o  4 

R 

a = loo 

L-61-2192 6 
(b) M = 3.51; R = 1.0 X 10 . 

Figure 3. - Continued. 
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( c )  M = 3.51; R = 3.5 X 10 . 

Figure 5. - Concluded. 

L-61-2191 



I -/ 

0 = 200 

(a) M = 2.65; R = 3.1 X 10 6 L-61-2194 

Figure 6. - Typical shadowgraph photographs of stepped-cylinder model. 
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6 
(b) M = 3.51; R = 3.5 X 10 . 

Figure 6. - Concluded. 
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6 
(a) M = 3.51; R = 2.2 x 10 . 

Figure 7.- Composite 
res ear c h 

= 4.50; R = 3 . 2  X 10 6 . L- 61 -2 196 

schlieren photographs of five-stage 
vehicle model. a = 0'. 



D 

K\ 
0 
L n  
rl 

A 

L 
, w *  
+ U L  
Q C O  
w .- w 
. r lc  
v) x +  

0 

x 
W L  
K O  
o w  
os1 + 

nu- I c 
w o w w  
L L E  

a -  0 a 
m o d +  
Z Q - +  

2; . ' o m  

a 

Y 

C 

E 
L 0 0 0  
.- 
w 
Q 
X 
w 

rn 
w 
D 0 0 0  d N  

33 

I 

I T 1: 

aJ m 
0 
E: 
k 
0 
E: 
0 
d 
-P 

i 
rl 
cd 
0 
.rl 
E: 
0 
V 
n 

cd 
W 

N 



0 .  0.. . 0.. 0 .  0 -  . 0 . 0.. 0 .  
0 .  0 .  0 .  . 0 . .  ... 0 . .  
0 .  ... ... 0 . 0 .  0 . . . . a  
0 .  0 .  ... . 0. .  . . ... 

0 .  0.. . . . 0 .  0 .  . 0 0.. 0 .  0.. 0 .  

34 

u, d e g  E x p e r i m e n t  T u r b u l e n t  i a m i n a r  M e a s s r e d  p o i n t  o f  

cone  t h e o r y  

0 _ _ _ - _ _ _ _  
cone t h e o r y  f l o w  r e - a t t a c h m e n t  

0 b 

0 
~ _ _ _  lo 0 ~- 

20 
8 

.028 

.024 

.020 

.016 
h 

.012 

.008 

.4 .8  1.2 1.6 2.0 2 . 4  2 . 8  3 . 2  3.6 4.0 .004' k *  5 ' ' ' ' I '  " " ' ' 
0 

x 2 / r  

(a) M = 2.63. 
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(b) M = 3.51. 

Figure 9.- The effect of angle of attack, Mach number, and Reynolds 
number on l o c a l  heat-transfer-coefficient distribution along wind- 
ward meridian of conical nose of stepped-cylinder model. 
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